NAVAL POSTGRADUATE SCHOOL Monterey, California

EC3550/EO3911

MIDTERM EXAM II

11/03 Prof. Powers

- \bullet This exam is closed book and notes except that notes on four sides of 8-1/2 x 11 paper are allowed.
- There is a 50 minute time limit.
- There are three problems; each is equally weighted.
- Partial credit will be given; be sure to do some work on each problem.
- Be *sure* to include units in your answers.
- $\bullet\,$ Please circle or underline your answers.
- \bullet Do NOT do any work on this sheet.
- Show ALL work.

1	
2	
3	
Total	

Name: .		

- 1. Quick answers...
 - (a) Calculate the loss (in dB) incurred due to core-radius mismatch in passing from a 50/125 step-index fiber into a 100/400 step-index fiber.
 - (b) A laser source operating at 1550 nm and a threshold current of 100 mA has an output power of 3 mW when operated at 150 mA. What is its power when operated at 180 mA?
 - (c) Explain how we can eliminate frequency chirp in a high bit-rate link.
 - (d) A 3x3 coupler has an insertion loss of 5.2 dB between an input and output. What is the excess loss of the this path in the coupler?
- 2. Two singlemode fibers are connected together. The 8/125 fibers on each side of the connection are the same. They each have a mode-field diameter (MFD) of 10 μ m, a Δ of 0.4%, and a core index of 1.460. The gap between the fiber ends is air.

After being run over by a tracked vehicle, the lateral misalignment is $0.5 \mu m$, the longitudinal separation is 0.50 μ m, and the angular misalignment is 2° . Find the expected connector loss (in dB) at an operating wavelength of 1550 nm.

- 3. A student-designed optical add-drop multiplexer operating at 1550 nm is shown in Figure 1 on the following page. The parameters of the various optical elements are also given below and in Figure 2 on the next page. You may assume that the losses in the fiber pigtails is negligible.
 - (a) The power at point "A" is -10 dBm. Using the "dB method", calculate the value of the power at point "B", in μW and in dBm.
 - (b) The power at point "C" is 1 mW. Using the "dB method", calculate the value of the power at point "D", in μW and in dBm that is reflected by the fiber grating.

Value $2.5~\mathrm{dB}$

Splice parameters		Isolator parar	Isolator parameters		
	Value	Parameter	Value		
Insertion loss		Insertion losses	$2.5~\mathrm{dB}$		
		Isolation	30 dB		
rectain loss		Return loss	25 dB		

Inputs on left; outputs on top						
	1	2	3			
1	∞	$1.0~\mathrm{dB}$	∞			
2	∞	∞	$1.1~\mathrm{dB}$			
3	1.2 dB	∞	∞			

Circulator parameters

Figure 1: Link of Problem 3.

Figure 2: Reflectivity (idealized) vs. wavelength for fiber grating of Problem 3.

Figure 3: Fig. 3.8 of text

Figure 4: Fig. 3.10 of text